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Abstract— Mirror detection aims to discover mirror regions
in images to avoid misidentifying reflected objects. Existing
methods mainly mine clues from spatial domain. We observe
that the frequencies inside and outside the mirror region are
distinctive. Besides, the low-frequency representing the feature
semantics can help to locate the mirror region, and the high-
frequency representing the details can refine it. Motivated by
this, we introduce frequency guidance and propose the dual
domain perception progressive refinement network (DPRNet) to
mine dual-domain information. Specifically, we first decouple
the images into high-frequency and low-frequency components
by Laplace pyramid and vision Transformer, respectively, and
design the frequency interaction alignment (FIA) module to
integrate frequency features to initially localize the mirror region.
To handle scale variations, we propose the multi-order feature
perception (MOFP) module to adaptively aggregate adjacent
features with progressive and gating mechanisms. We further
propose the separation-based difference fusion (SDF) module
to establish associations between entities and imagings and
discover the correct boundary to mine the complete mirror
region. Extensive experiments show that DPRNet outperforms
the state-of-the-art method by an average of 3% with only about
one-fifth of the parameters and FLOPs on four datasets. Our
DPRNet also achieves promising performance on remote sensing
and camouflage scenarios, validating its generalization. The code
is available at https://github.com/winter-flow/DPRNet.
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I. INTRODUCTION

IRROR detection (MD) is a challenging task that

aims to determine imagings and entities in images
and thus correctly identify and segment the mirror regions.
The reflective property of mirrors can seriously affect other
tasks such as segmentation [1], [2], image restoration [3],
[4], depth estimation [5], vision-language navigation [6].
Therefore, accurate MD is fundamental to downstream tasks.

As shown in Fig. 2 (a), MD mainly has three issues.
1) Reflection misdirection (example 1). Reflection makes the
physical properties of objects inside and outside the mirror the
same, causing the model easy to confuse imagings and entities,
how to establish the correlation between these two regions is
the core of many methods. For example, SATNet [7] utilizes
the symmetry property of mirrors. 2) Large scale variation
(example 2-4). the variation of the mirror area is very large,
either close to the whole image or occupying only less than
30x30 pixels (small target), making it difficult to find the
corresponding entities. Utilizing additional cue guidance may
be a solution. For example, Mei et al. [8] constructed a new
RGBD mirror dataset and proposed the PDNet to guide MD
by fusing depth information. 3) Occlusion and irregular shapes
(example 5). The general shapes of mirrors are circle-like and
rectangular. However, the camera angle and entities occlusion
can lead to the mirror regions with various shapes and unclear
boundaries. To resolve this, HetNet [9] utilizes edge generation
as an auxiliary task to better handle irregular mirror regions.

Vision tasks similar to MD include salient object detection
(SOD) and camouflage object detection (COD), but they can
not be applied directly. Due to the interference of reflections,
SOD methods are likely to detect both imagings and entities.
COD aims at segmenting the foreground that is similar to
the background, which can result in misidentified targets if
being directly applied to mirror images. Therefore, some
structures need to be customized according to the reflection
mechanism. As shown in Fig. 1, our proposed efficient
DPRNet achieves the best performance on F /;“ and E,, with
low computational complexity, outperforming the state-of-the-
art (SOTA) methods of SOD, COD, and MD, i.e., VST [11],
FPNet, and SATNet, respectively.

As shown in Fig. 2 (b), existing MD frameworks can be
broadly categorized into three classes. 1) Plain framework.
Following the U-Net encoding and decoding paradigm, the
extracted features are processed by the same customized
modules and then progressively fed into the decoder.
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Fig. 1. Comparison of our DPRNet with ten SOTA detection methods on

weighted F-measure (F g) ), mean E-measure (Ej; ), and parameters using PMD

dataset [10]. Larger circle indicates higher parameters. DPRNet demonstrates
better performance with low computational complexity.
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Fig. 2. Description of (a) MD task issues and (b) existing detection

frameworks. (i) is plain architecture represented by MirrorNet [12], PMD
[10], which passes all the features of the encoder to the decoder through
the same modules. (ii) is heterogeneous architecture represented by SANet
[13], HetNet [9], where customized modules are designed for low and high
level features, respectively. (iii) is our shrink architecture, which introduces
frequency guidance and aggregates adjacent features.

2) Hierarchical framework. Low-level features contain more
details, while high-level features have rich semantics, thus
modules need to be designed separately and then integrated
carefully for better results. 3) Our frequency guidance and
feature shrinkage framework. Unlike the PDNet [8], which
takes spatial and depth images as multimodal inputs, our
approach takes only RGB images as inputs and obtains fre-
quency features as guidance through specific transformation.
In addition, we explore cross-layer correlations by aggregating
adjacent features to achieve contextual information coupling
without designing multiple modules.

Based on the above discussion, we propose the frequency-
guided progressive refinement network (DPRNet). Since high
frequency indicates details (e.g., edges, textures) and low
frequency indicates semantics, it is beneficial to distinguish the
mirror and non-mirror regions by using the frequency informa-
tion. Motivated by [14] and [15], we use vision Transformer
to capture low-frequency components and Laplace pyramid to
acquire multiple high-frequency components and adaptively
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fuse them, respectively. We further propose the frequency
interaction alignment (FIA) module to eliminate frequency
representation differences and align common features. The
scale of mirrors varies greatly, which may result in images
with only reflections but no corresponding entities, so it is
insufficient to establish imagings and entities associations
alone. To this end, we propose the multi-order feature
perception (MOFP) module to aggregate adjacent features,
and achieve deep mining of matched features through
channel splitting, progressive fusion and gating mechanisms.
Finally, we propose the separation-based difference fusion
(SDF) module to fuse the foreground-background mask and
difference map respectively to explore the correlations between
mirror and non-mirror regions, imagings and entities. Thanks
to these careful designs, we can mine clear mirror boundaries
and detect complete mirror regions.

In summary, our main contributions are as follows:
« We introduce frequency guidance and propose the

DPRNet model based on the frequency aware differences
of mirror and non-mirror regions.

o We propose the FIA module to align different frequency
representations. To handle scale variations, we design the
MOFP moudle to aggregate adjacent features. In addition,
we formulate the SDF moudle to establish object
correlations in and out of the mirrors.

« Extensive experiments show that DPRNet outperforms
the SOTA method on mirror detection task by an average
of 3%, with only about one-fifth of the parameters and
FLOPs. Our method also performs well on other tasks
such as remote sensing and camouflage detection.

II. RELATED WORK
A. Mirror Detection

Existing MD methods can be roughly divided into
three categories. The first category aims to achieve more
accurate detection performance. Yang et al. [12] proposed
the first MD method, called MirrorNet, which explores the
correlation between internal and external features of mirrors.
Lin et al. [10] introduced the PMDNet, which compares mirror
features with context for correspondence and incorporates
edge information. Guan et al. [13] constructed semantic
associations among objects based on graph representation.
Huang et al. [7] built a dual-stream network based on
Transformer to explore the symmetry property of mirrors.
The second category involves incorporating prior information,
such as depth. Mei et al. [8] proposed the PDNet, which
utilizes the difference of depth information between mirrors
and other objects to guide detection. However, this inevitably
introduces noise. The third category focuses on constructing
lightweight detection models. He et al. [9] presented the
HetNet, which explores low-level and high-level features in
heterogeneous manner. Without introducing prior information,
our proposed DPRNet achieves the promising performance
with low computational complexity.

B. (Remote Sensing) Salient/Camouflage Object Detection

SOD is a rapidly developing field aimed at discovering
salient objects in images. Xie et al. [16] proposed the one-stage
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The overview of our DPRNet. We first use PVT network (vision Transformer architecture) as encoder to extract spatial (low-frequency) features,

and Laplace pyramid to acquire multiple high-frequency features and adaptively fuse them using RCAB. We further apply the FIA module to align the high
and low frequency information. Then, we aggregate the adjacent features by the MOFP moudle. Finally, we utilize the SDF module to progressively decode
to obtain the detection maps and compute the losses during the training process.

detection method for handling high-resolution images using
combination of convolutional neural networks (CNN) and
Transformer. Li et al. [17] introduced the ICNet through
information conversion for RGB-D SOD. Remote Sensing
SOD (RSSOD) aims at identifying salient objects in optical
remote sensing images. Bai et al. [18] presented global-
local-global context-aware network. Li et al. [19] introduced
LVNet, an end-to-end network using a two-stream pyramid
module. COD can be considered as the inverse task of
SOD, aiming to identify camouflage (non-salient) objects.
Fan et al. [20] presented the SINet, which decouples COD
into search and recognition. Li et al. [21] proposed the PENet,
which enhances feature representation in progressive manner.
However, SOD/RSSOD/COD [22], [23], [24], [25], [26], [27],
[28] and general segmentation methods [29], [30], [31], [32]
do not establish correlations between entities and imagings,
making them susceptible to reflection interference, thus cannot
be directly applied to MD task.

C. Vision Transformer and Laplacian Pyramid

Unlike CNN that extract local features, Transformer, with
self-attention (SA) [33] as its core architecture, is good at
capturing long-range dependencies of features and has been
applied to many vision tasks. However, Park et al. [34] have
demonstrated that Transformer is insensitive to capturing high-
frequency information.

Laplace pyramid [15] can decompose an image into high
and low frequency bands. For arbitrary image/feature map
I e ROV the computed low-pass prediction I/ €
RCXZ*% s utilized to obtain the high frequency feature
1;; e REXHXW ysing [ — IAI", where i[ is upsampled from
I', i is the number of iterations.

Inspired by the above discussion, we decouple the mirror
and non-mirror regions features from frequency domain and
design the FIA module for frequency alignment.

III. PROPOSED METHOD

A. Overall Architecture

The overview of our DPRNet is shown in Fig. 3. It contains
three key components, i.e., FIA moudule, MOFP module and
SDF module. Given an image I € R3>*#*W we pass it to the
PVT encoder [35] and obtain multi-scale feature maps X' €

Rci x 4ﬁ‘ x %, where C, H, W denote channels, height and width
respectively, i € {1, 2, 3,4}. Meanwhile, we utili%{e I;/aplace
pyramid to obtain high-frequency maps F' e R332 %57 (j e
{0, 1, 2}) and residual channel attention block (RCAB) [36] for
adaptive feature fusion, generating Fy (adjusted to the same
size as X'). We then use the FIA module to obtain better
frequency representation, MOFP module and SDF module to
aggregate and fuse features. Finally, we compute the loss of
multiple prediction maps decoded during training.

B. Frequency Interaction Alignment Module

The high-frequency components of images represent details
such as edges, textures, while the low-frequency components
represent semantics. Therefore, mirror and non-mirror regions
can be separated from the frequency domain. To extend the
difference between these two regions, we design the FIA
module for modeling better frequency representation. And
we introduce frequency guidance only at X' to ensure the
efficiency of our model. As shown in Fig. 4, FIA module can
be divided into two parts: interaction and alignment.

1) Interaction: We first encode local features using 1x1
and 3x3 convolutions for X! € ROXT*T and generate
query, key and value, i.e., Oy, K,, and V, € RYCIXVCIxN by

dimension transformation and normalization, where N = %.
The process can be formulated as:
Or, Ky, Vi = ®(X1) (1)
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Fig. 4.  Structure of the FIA module. We use it to eliminate differences
for better frequency representation and divide into two parts: interaction and
alignment.
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where @ denotes the combination of 3x3 depth-wise convo-
lution [37] and feature map shape adjustment, normalization.
Similarly, we can obtain Qs, Ky, and V; € RVC1xy/CixN
from Fy. Then we compute the correlation map of the low-
to-high frequency features to realize the interaction by:

T

K
Q hy )
T

corrpy = softmax(

where 7 is a learnable scaling factor. Similarly, we can
obtain the correlation map of high-to-low frequency corrpy; €
RVCTxVCixv/Ci | Plain self-attention computes the correlation
map corrpain € RENXN from the spatial perspective
(mainly related to width and height) and thus requires more
computational complexity. We instead save at least three times
the resource consumption (memory usage) from the channel
perspective with essentially no impact on the performance.
We further generate post-interaction low-frequency features
by:

X} = corrpy Vy + X! 3)

Similarly, we can obtain post-interaction high-frequency
features Fj. Note that shape adjustment is required for sum.

2) Alignment: We perform channel compression on X } and
Fr respectively, and then fuse them to obtain the spatial map
S e RZX%X%, which can be expressed as:

S = o (CR(Concat (Avg(X}), Avg(Fy)))) 4)

where Avg indicates that pixels are averaged along the
channel dimension, o expresses the sigmoid, and CR expresses
the convolution and ReLU. Thus, the alignment feature
X} e ROXEXT js generated by:

X} = CR(RCAB(Concat(S' © X}, S*© F1))) + X' + Fy
(5)

where S! and $2 € R¥*¥ are the first and second
channel maps of S, respectively. ® denotes element-by-
element multiplication.

As shown in Fig. 5, we provide high and low frequency
maps obtained by Laplace pyramid and corresponding
frequency statistics, as well as the original image and statistics.
The frequency distributions of the mirror (blue) and non-
mirror regions (red) differ remarkably, especially in the
high-frequency part.
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C. Multi-Order Feature Perception Module

The size of the mirror region varies greatly, e.g., large targets
may be more than ten times the size of small targets. In such
scenario, entities may not exist that correspond to imagings,
or only partially correspond, making it difficult to infer the
complete mirror region by establishing associations between
them. To this end, we propose the MOFP module to explore
the correlation of neighboring features and integrate contextual
information. The structure details of the MOFP (abbr. M k ) are
shown in Fig. 6, where k € {1, 2, 3, 4}.

Specifically, when k = 2,3, we adjust X*+1 and X* to
the same shape. When k = 1 and k = 4, we resize X}-
and X, the output of M; and X% (generated based on
X* by convolution), respectively. Using k = 2 as an example,
we compute the weights of the neighboring feature maps by
channel attention (CA) [38] for adaptive fusion, generating
X ?’3, which can be formulated as:

X?;3 =CAXH O X*+CAUPX)OUPX? (6)
where U P denotes up-sampling. We then decouple X ?;3 by:

Xg=8(X> + W(X7’ — AP(X})) (7

where AP denotes adaptive average pooling. W is a scaling
function, we set the coefficient to le-5. § denotes the GELU
activation function [39].

To explore the multiorder relationships within the features,
we generate Xé by splitting X4 by the ratio 1:1:2:4, where
I € {1,2,3,4}. Taking the example of aggregating Xall and

XZ,, the process can be interpreted as:
X2 = Proj(8(DWConvsxs(Xy + X7))) (8)

where DWConvsyxs means depth-wise convolution of size
5x5. We map channels of the current feature map to its
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double by Proj. By pro§ressive1y aggregating, we can get
X *;34. We then enhance X f’4 and generate X, by:

X, = 8(Convia (X)) ©)

We further apply gating mechanism to X,,generating X,
by:

Xy = 8(Convi(X77) © X, (10)
Therefore, the final output X, is:
X2 =Xx7 + X, (11)

D. Separation-Based Difference Fusion Module

Previous work mainly focus on the foreground (mirror
region) while ignoring the fact that people determine the object
attributes by comparing surroundings [40]. To establish the
connection between mirror and non-mirror regions, imagings
and entities, we formulate the SDF module. We can obtain
clearer boundaries, better robustness of the model when
dealing with occlusions, and thus complete mirror regions. The
details of the SDF are shown in Fig. 7, just like a parallel-
series structure.

Specifically, MOFP (M) shares correspondence with SDF
(DY), where k € {1,2,3,4}. When k = 4, the SDF
focuses on the background mask. When k < 3, it focuses
on the foreground mask and has three inputs: one from the
ouput of M*, two from the ouput of D! As with the
illustration of MOFP, we take k = 2 as an example. Thus,
the input of D? are f3, p> (generated by D3) and Xg’S.
We use max pooing (MP) and average pooling (AP) to obtain
difference maps Dif,,, which can be expressed as:

fy = UP(Convy,r(f3)) (12)
Dif,, = Ly(AP(X}?) — MP(f;)))
+ L2(AP(f2)) = MP(X2?)) (13)

We then fuse the feature maps, foreground mask and
difference map, thus generating X/, using the following
formula:

X, = Concat((X, ® Dif,, © p*), f3,) (14)
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Note that when k = 1, we use 1 — p?, not p>. Finally, the
output of D? can be expressed as:

f2 = Convsys(X)), p* = Convyr(f2) (15)

E. Loss Function

We apply supervision to each predicted mask generated by
the decoder. Following [9], we employ weighted BCE loss
(WBCE) L)) [41] and weighted IoU loss (wloU) £}/ [42]
to help the model mine difficult and then improve robustness.
Thus, the total loss can be expressed as:

5
Etotal = Z‘C}}?VCE + E%U

i=1

(16)

IV. EXPERIMENTS
A. Datasets

We conduct experiments on four datasets. Mirror Datasets:
1) MSD dataset [12] primarily focuses on indoor scenes
and consists of 3,063 training and 955 testing images.
2) PMD dataset contains various scenes and multiple objects,
with 5,096 training and 571 testing images. 3) Mirror-RGBD
dataset [8] includes depth images with higher resolutions and
comprises 2,000 training and 1,049 testing images. We use the
following dataset to validate the model’s generalization ability.
Glass Dataset: GSD dataset [43] contains 3,285 training and
813 testing images. Remote Sensing Datasets: ORSSD [19]
consists of 600 training images and 200 testing images.
EORSSD [24] is its extended version, with 1400 images for
training and 600 for testing. ORSI4199 [44] contains various
complex scenarios, such as small objects, with 2000 images for
training and 2199 images for testing. Camouflage Datasets:
CAMO [45] consists of 1000 training images and 250 testing
images. COD10K [20], [46] has 3040 images for training and
2026 images for testing. NC4K [47] is only used for testing.

B. Implementation Details

We implement the model and conduct experiments on an
A100 GPU via Pytorch. Following [48], we utilize PVT
network [35] pretrained on ImageNet as the encoder and
employ some image augmentation methods, e.g., horizontal
flip. For mirror, glass, and camouflage datasets, following [10],
[43], [48], [49], and [50], all inputs are scaled to 384 x 384. For
remote sensing datasets, following [18], all inputs are scaled to
352 x 352. Note that no post-processing (e.g., CRF) is applied.
For training on mirror, remote sensing, and camouflage scenes,
we use AdamW [51] as the optimizer with 200 epochs, the
initial learning rate of le-4 and the batch size of 28. For
training on the GSD dataset, we follow [43] and set the epoch
to 80 and the batch size to 6. For testing, we do not use tricks
such as test-time augmentation.

C. Evaluation Metrics

We adopt six evaluation metrics: S-measure (S,;,) [52], mean
E-measure (E,,) [53], weighted F-measure, (F é”), adaptive F-

measure(ngp ) [54], Intersection over union (IoU), and Mean
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TABLE I

QUANTITATIVE COMPARISON ON MSD AND PMD DATASETS WITH FIVE EVALUATION METRICS. S, C, G, M DENOTE SOD,
COD, GENERAL SEGMENTATION, MD METHODS RESPECTIVELY. THE BEST PERFORMANCES ARE BOLDED

Methods | Att. | MSD | PMD
| | MAEL SmT Em? Fgt DUt | MAEL SmT Em? Fgt IoUT
CPDNet S 0.116 0.725 0.770  0.625 0.576 0.041 0.779  0.817 0.651 0.600
R3Net S 0.111 0.723  0.743 0.615 0.554 0.045 0.720 0.756  0.561  0.496
EGNet S 0.096 0.771  0.776  0.668  0.630 0.088 0.617 0.593 0362 0.210
PoolNet S 0.094 0.804 0.831 0.717 0.691 0.089 0.588 0.532 0313 0.192
MINet S 0.088 0.792 0.819 0.715 0.664 0.038 0.794 0.822 0.667 0.601
SETR S 0.071 0.797 0.840 0.750 0.690 0.035 0.753 0.775 0.633 0.564
LDF S 0.068 0.821 0.867 0.773  0.729 0.038 0.799 0.833 0.683 0.633
VST S 0.054 0.861 0.901 0.818 0.791 0.036 0.783 0.814 0.639 0.591
FPNet | C | 0.042 0.883 0917 0.849 0.827 | 0.033 0.823 0.874 0.717 0.673
SAM | G | 0.124 - - - 0.515 | 0.052 - - - 0.647
MirrorNet M 0.065 0.850 0.891 0.812 0.790 0.043 0.761  0.841 0.663 0.585
PMDNet M 0.047 0.875 0.908 0.845 0.815 0.032 0.810 0.859 0.716  0.660
HetNet M 0.043 0.881 0921 0.854 0.824 0.029 0.828 0.865 0.734  0.690
SATNet M 0.033 0.887 0916 0.865 0.834 0.025 0.826 0.858 0.739 0.684
CSFwinformer M 0.045 - - - 0.821 0.024 - - - 0.700
Ours | M | 0.033 0.904 0.934 0.888 0.866 | 0.026 0.844 0894 0.766 0.721
TABLE 1T
QUANTITATIVE COMPARISON ON ORSSD, EORSSD, AND ORSI14199 DATASETS WITH FIVE EVALUATION METRICS.
THE BEST PERFORMANCES ARE BOLDED

Methods | ORSSD | EORSSD | ORSI4199

| MABL 5,1 Enl F3™t | MAEL Sut EnT  F§1 | MABL 8.1 Bl F5™1
ICON 0.012 0.926 0.964 0.844 | 0.007 0.918 0.962 0.806 0.028 0.875 0.944 0.853
HFANet 0.009 0940 0.971 0.882 | 0.007 0.938 0.968 0.836 0.031 0.877 0.934 0.832
ASTT 0.009 0935 0970 - 0.006 0.925 0958 - - - - -
GLGCNet | 0.007 0949 0.982 0.893 | 0.006 0.937 0.976 0.850 0.027 0.884 0.947 0.867
Ours \ 0.006 0952 0.986 0.910 \ 0.004 0.942 0.978 0.872 \ 0.024 0.891 0.954 0.885

TABLE III
QUANTITATIVE COMPARISON ON CAMO, CODI10K, AND NC4K DATASETS WITH FIVE EVALUATION METRICS.
THE BEST PERFORMANCES ARE BOLDED

Methods | CAMO | COD10K | NC4K

| MAEL St Ent  F§T | MAEL Spt  Ent  F§t | MAEL SnT  Ent  FYt
PoPNet 0.073 0.806 0.859 0.743 | 0.031 0.827 0910 0.757 | 0.043 0.852 0.909 0.802
ZoomNet | 0.066  0.820 0.892 0.752 | 0.029 0.838 0.911 0.729 | 0.043 0.853 0.912 0.784
FEDER 0.066 0.836 0.897 - 0.029 0.844 0911 - 0.042 0.862 0913 -
FSPNet 0.050 0.856 0.899 0.799 | 0.026  0.851 0.895 0.735 | 0.035 0.879 00915 0.816
Ours \ 0.046 0.865 0.930 0.830 \ 0.025 0.854 0.926 0.772 \ 0.033 0.880 0.934 0.838

Absolute Error (MAE). Note that the higher the better for the
first five. We also utilize more intuitive Precision-Recall (P-R)
and F-measure curves.

D. Comparison With SOTA Methods

1) Quantitative Comparison: We compare with SOTA
methods on three classes of four datasets to validate the
superiority and generalization of our method, as shown in

Tables I, II, III, IV, and V. Specifically, for MSD and
PMD datasets, we select eight SOD methods, i.e., CPDNet
[55], R3Net [56], EGNet [57], PoolNet [58], MINet [59],
SETR [60], LDF [61], VST [11], one COD method, i.e.,
FPNet [49], three general segmentation model, i.e., SAM [31]
and five MD methods, i.e., MirrorNet [12], PMDNet [10],
HetNet [9], SATNet [7], and CSFwinformer [62]. Our
method outperforms various types of detection models, and
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Fig. 8. Qualitative comparison on MSD and PMD datasets. The first three rows show occlusion scenes, the fourth row presents the multi-mirror regions and

close to each other scene, and the last three rows show scale variation scenes.
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Fig. 9. P-R curves and F-measure curves tested by our method, eight SOD
models, and three MD methods on two datasets, i.e., (a) MSD and (b) PMD
datasets. Zoom in for better view.

in particular outperforms the frequency-aware FPNet by a
significant margin, demonstrating that our frequency-guided
DPRNet considers the task attributes of MD better. For Mirror-
RGBD dataset, seven multimodal SOD methods i.e., A2dele
[63], HDFNet [64], S2MA [65], DANet [66], JL-DCF [67],
VST [11], BBSTNet [68], and one multimodal MD method
i.e., PDNet [8] are used for comparison. Although our method
does not use depth information, it still outperforms some

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on August 21,2025 at 11:57:27 UTC from IEEE Xplore. Restrictions apply.

Image

Fig. 10.  Qualitative comparison on Mirror-RGBD, showing multi-mirror
regions and close to each other scenes.
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Fig. 11. Qualitative comparison on remote sensing scenes.
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Fig. 12. Qualitative comparison on camouflage scenes.

multimodal SOD methods and is close to the PDNet. Note
that our DPRNet is not a multimodal method. For GSD
dataset, we choose one SOD method i.e., BASNet [69],
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TABLE IV

QUANTITATIVE COMPARISON ON MIRROR-RGBD DATASET WITH FIVE
EVALUATION METRICS. D. REPRESENTS DEPTH MAP. THE BEST
PERFORMANCES ARE BOLDED

Methods | D. Mirror-RGBD

MAE| S,.1 Ent F§t  IoUT
A2dele | v [ 0120 0.641 0730 0505 0.428
HDFNet | v/ | 0.095 0.671 0.663 0.521 0.447
S2MA v | 0075 0765 0.797 0.646 0.609
DANet | v | 0.063 0.800 0.842 0.728 0.678
JL-DCF | v | 0057 0815 0.861 0.750 0.696
VST v | 0054 0815 0859 0751 0.702
BBSTNet | v/ | 0.048  0.840 0.881 0.786 0.743
PDNet | v/ | 0.042 0.856 0.906 0.825 0.778
Ours | ]0.047 0845 0.899 0.811 0.761

TABLE V

QUANTITATIVE COMPARISON ON GSD DATASET WITH THREE
EVALUATION METRICS. THE BEST PERFORMANCES ARE BOLDED

Methods GSD

MAE| Fj3t TIoU?T
BASNet 0.106 0.808 69.79
SINet 0.077 0.875 177.04
TransLab 0.088 0.837 74.05
GDNet 0.069 0.869 79.01
GSDNet 0.055 0.903 83.64
PGSNet 0.054 0.868 83.65
GlassSemNet | 0.044 0.920 85.60
Ours 0.049 0918 84.91

TABLE VI

MODEL EFFICIENCY COMPARISON. WE COMPARE WITH FOUR
MD SOTA MODELS ON PARAMETERS (M), FLOPs (GMAC). THE
BEST PERFORMANCES ARE BOLDED

Methods Input Size ‘ FLOPs| ‘ Params.|
MirrorNet 384x384 77.73 121.77
PMDNet 384x384 101.54 147.66
SATNet 512x512 153.00 139.36
CSFwinformer | 512x512 139.45 150.54
Ours 384x384 30.47 ‘ 31.19

[#0160/0/0

Image (a) Baseline (b) +MI1 (c¢) +MI1+M2 (d) +M1+M3 (e) Ours (f) GT (g)

Fig. 13. Qualitative ablation. With more modules are added, our model can
remove occlusion and generate accurate boundary.

one COD method i.e.,, SINet [20] and five glass detection
methods i.e, TransLab [70], GDNet [71], GSDNet [43],
PGSNet [50], and GlassSemNet [72]. For ORSSD, EORSSD
and ORSI4199 datasets, we choose four remote sensing SOD
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Fig. 14. Failure cases.

methods, i.e., ICON [73], HFANet [74], ASTT [75], and
GLGCNet [18]. For CAMO, CODI10K and NC4K datasets,
ZoomNet [76], FEDER [77], FSPNet [78], and PopNet are
chosen. Our method still achieves impressive results and
proves to generalize well. In addition, compared with MD
methods such as SATNet, our method has lower model and
computational complexity, as shown in Table VI. Note that
larger input size indicates higher FLOPs.

2) Qualitative Comparison: Some representative examples
on the three mirror datasets are selected for visualization
and comparison. As shown in Fig. 8, the first three rows
represent irregular and regular occlusion scenarios. Our
method can effectively distinguish entities and imagings to
obtain complete mirror regions. The fourth row represents
multi-target scenes, Our method can recognize all mirror
regions and establish clear boundaries. The last three rows
show scale variation scenarios. Our method can capture local
and global dependencies with good robustness. As shown in
Fig. 9, our method also exhibits promising performance in
terms of the P-R and F-Measure curves. As shown in Fig. 10,
we do not utilize depth information and use small input size,
but achieve promising results in challenging scenarios. We also
provide visualizations on remote sensing and camouflage
scenarios, as shown in Fig. 11 and 12.

E. Ablation Study

We validate the effect of each module on MSD and
PMD datasets and provide visualization, as shown in
Tables VII, VIII, IX, X, and Fig. 13.

1) Effect of the FIA Module: As shown in
Fig. 13(b) and (c), Baseline initially locates the position
of mirror region, but can not handle occlusion and has
some mislocalized pixels (upper right corner). By adding
the FIA moudle, our model distinguishes mirror and non-
mirror regions, initially recognizes occlusion entities, lays
the foundation for subsequent refinement, and eliminates
erroneous pixels. Compared with Baseline, it improves by
0.5%, 0.9%, 1.2%, 1.4%, and 1.6% for the S,,, E,, Fg’ and
IoU metrics on the MSD dataset, respectively.

2) Effect of the MOFP Module: We evaluate the perfor-
mance of MOFP module based on “Baseline+FIA” model,
with 0.4%, 1.4%, 0.5%, 1.1%, and 1.4% improvement on the
five metrics for the MSD dataset, respectively. As shown in
Fig. 13 (d), with the addition of the MOFP module, occlusion
problem is further alleviated, and other mirror regions are
not affected, indicating that the MOFP moudule can establish
long and short-range feature dependencies to handle irregular
foregrounds and explore the correlation of adjacent features.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on August 21,2025 at 11:57:27 UTC from IEEE Xplore. Restrictions apply.



11950

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 11, NOVEMBER 2024

TABLE VII

QUANTITATIVE ABLATION ON MSD AND PMD DATASETS. M1, M2, AND M3 INDICATE THE FIA MODULE,
MOFP MODULE, AND SDF MODULE, RESPECTIVELY

Method ‘ Component ‘ MSD

\ PMD

\Ml M2 M3\MAE¢ Sl Ent FY1 IoUT‘MAEi Sul Ent FYT IoUt

I 0.048
I v 0.043
I v 0.042
v v 10.044
\Y% v 7 0.039
VI v v’ 10.038
VII v v |0.040

0.873 0.905 0.849 0.817(0.045
0.882 0.917 0.863 0.833|0.039
0.880 0.919 0.857 0.835|0.040
0.886 0.911 0.864 0.829(0.038
0.896 0.922 0.874 0.847|0.032
0.891 0.924 0.871 0.850/0.030
0.895 0.925 0.873 0.848|0.030

0.812 0.866 0.738 0.678
0.823 0.875 0.747 0.695
0.825 0.871 0.743 0.697
0.821 0.870 0.748 0.694
0.831 0.881 0.754 0.709
0.829 0.885 0.751 0.713
0.833 0.883 0.755 0.708

Ours |V v v 10.033

0.904 0.934 0.888 0.866|0.026

0.844 0.894 0.766 0.721

TABLE VIII

QUANTITATIVE ABLATION ON MSD AND PMD DATASETS. M1, M2, M3, AND M4 INDICATE THE WAVELET, FOURIER,
DISCRETE COSINE, AND LAPLACE TRANSFORMS, RESPECTIVELY

Method ‘ Component ‘

MSD

| PMD

M1 M2 M3 M4|MAE| 5,7 Bt Fyt IoUt [MAEL St E, 1 FyT IoUt

I v 0.031 0.897 0.928 0.891 0.859(0.022 0.838 0.891 0.761 0.717

I v 0.035 0.901 0.933 0.884 0.861[0.030 0.840 0.898 0.763 0.719

1 v 0.030 0.900 0.927 0.881 0.857(0.028 0.840 0.888 0.759 0.723

Ours v' 10.033 0.904 0.934 0.888 0.866|0.026 0.844 0.894 0.766 0.721
TABLE IX

QUANTITATIVE ABLATION ON MSD DATASET. M1, M2 INDICATE THE
INTERACTION MODULE AND ALIGNMENT MODULE, RESPECTIVELY

Method|M1 M2|MAEL St E,t Fy1 ToUf

I
II

v 0.045 0.880 0.909 0.858 0.827

v/ 10.048 0.876 0.900 0.853 0.823

Ours \/ v \0.043 0.882 0.917 0.863 0.833

TABLE X

QUANTITATIVE ABLATION ON MSD DATASET. M1, M2 INDICATE THE
DIFFERENCE MODULE AND SEPARATION MODULE, RESPECTIVELY

Method|M1 M2|MAEL St E,t Fy1 IoUf

I
II

v 0.046 0.879 0.901 0.855 0.823

0.045 0.882 0.909 0.865 0.826

v

Ours \/ v \0.044 0.886 0.911 0.864 0.829

3) Effect of the SDF Module: Similar to evaluating the
performance of the MOFP module, we conduct further
experiments based on the “Baseline+FIA” model to validate

the effect of the SDF module. As shown in Fig. 13 (e), with
the SDF module separating foreground and background and
establishing the association between entities and imagings,
occlusion problem has been basically resolved. The five
metrics have shown improvements of 0.5%, 0.9%, 0.7%, 0.8%,
and 1.7% on the MSD dataset. However, the mirror region in
the upper right corner has been affected, thus it is necessary
to combine the MOFP module.

4) Combination of Three Modules: Each module has its
own role, and only by combining them can we maintain
accurate and complete mirror regions in various scenarios,
such as occlusions and scale changes, as shown in Fig. 13 (f).
When combined, the performance improves by 1.5%, 3.1%,
2.9%, 3.9%, and 4.9% on the MSD dataset, respectively, and
the detection result is close to the ground truth (GT).

5) Different Frequency Decomposition Methods: As shown
in Table VIII, we use various frequency decomposition
methods to obtain the high-frequency components of an
image, and the Laplacian method achieves better performance.
By combining features from different scales, we can obtain
better high-frequency representations.

6) Effect of Interaction Component of the FIA Module:
As shown in Table IX, the interaction component achieves
information complementarity by exchanging pixel-level infor-
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mation between high-frequency and low-frequency features.
However, the frequency differences inevitably result in feature
misalignment.

7) Effect of Aliment Component of the FIA Module: As
shown in Table IX, we utilize the alignment component
to reduce the differences between high-frequency and low-
frequency domains, but its improvement is weaker compared
to using the interaction component alone. By combining both
components, the performance is further enhanced. It can
be observed that frequency interaction forms the basis for
achieving alignment.

8) Effect of Difference-Awre Component of the SDF
Module: As shown in Table X, we apply difference-aware
component to emphasizes selective difference perception
through pooling, capturing differences from both low-high
and high-low perspectives. Despite the overall performance
improvement compared to the baseline, there is a decrease of
0.4% in E,. This may be attributed to the neglect of some
insignificant (detail) but critical differences between features.

9) Effect of Separation-Awre Component of the SDF
Module: As shown in Table X, we utilize the separation
component to achieve foreground-background separation.
Based on this, we further incorporate the difference component
to hierarchically capture different feature differences while
compensating for fine-grained perception. It can be observed
that the combination of both components enables complemen-
tarity and further improves performance.

F. Failure Samples and Futuer Work

As shown in Fig. 14, our method does not perform well
in scenes with severe irregular occlusions such as chandeliers,
flowers and slender mirrors. In the future, we will address
these from two aspects: 1) By applying uncertainty perception,
we can establish probability pixel distributions to locate
problematic areas, enabling us to fully exploit fine-grained
or irregular features. 2) We will design more appropriate
loss functions to enhance the ability of modeling elongated
features.

V. CONCLUSION

In this paper, we rethink MD frameworks and propose
the DPRNet. Motivated by our findings of the frequency
difference of mirror and non-mirror regions, we use Laplace
pyramid and vision Transformer to decouple and obtain
high and low frequency features, respectively. Then the FIA
module is proposed to eliminate the frequency differences
and locate the target region initially. We further design the
MOFP module to aggregate adjacen features to tackle mirror
size variations. Finally, we propose the SDF module to
facilitate the separation of foreground and background and
establish connections between entities and imagings. Extensive
experiments demonstrates that our DPRNet outperforms the
SOTA method by an average of 3%, with only about one-fifth
of the parameters and FLOPs.
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